热门搜索:高温合金,特种合金,特殊钢,不锈钢,高速钢,合金钢,石墨等等!
技术文章 / article 您的位置:网站首页 > 技术文章 > 航空航天材料性能特点

航空航天材料性能特点

发布时间: 2022-01-05  点击次数: 6295次
式中,σ为材料强度,E为材料弹性模量,ρ为材料密度。飞行器除了受静载荷的作用外还要经受由于起飞和降落、发动机振动、转动件的高速旋转、机动飞行和突风等因素产生的交变载荷,因此材料的疲劳性能也受到人们极大的重视。 [1] 
2.优良的耐高低温性能
飞行器所经受的高温环境是由空气动力加热、发动机燃气以及太空中太阳的辐照造成的。航空器长时间在空气中飞行,有的飞行速度高达3倍音速,所使用的高温材料要具有良好的高温持久强度、蠕变强度、热疲劳强度,在空气和腐蚀介质中要有高的抗氧化性能和抗热腐蚀性能,并应具有在高温下长期工作的组织结构稳定性。火箭发动机燃气温度达30000C以上,喷射速度可达十余个马赫数,而且固体火箭燃气中还夹杂有固体粒子,弹道头部在进入大气层时速度高达20个马赫数以上,温度高达上万摄氏度,有时还会受到粒子云的侵蚀,因此在航空技术领域中所涉及的高温环境往往同时包括高温高速气流和粒子的冲刷。在这种条件下需要利用材料所具有的熔解热、蒸发热、升华热、分解热、化合热以及高温黏性等物理性能来设计高温耐烧蚀材料和发汗冷却材料以满足高温环境的要求。太阳辐照会造成在外层空间运行的卫星和飞船表面温度的交变,一般采用温控涂层和隔热材料来解决。低温环境的形成来自大自然和低温推进剂。飞机在同温层以亚音速飞行时表面温度会降到-50C左右,极圈以内各地域的严冬会使机场环境温度下降到-40C以下,在这种环境下要求金属构件或橡胶轮胎不产生脆化现象。液体火箭使用液氧(沸点为-183℃)和液氢(沸点为-253℃)作推进剂,这为材料提出了更严峻的环境条件。部分金属材料和绝大多数高分子材料在这种条件下都会变脆。通过发展或选择合适的材料,如纯铝和铝合金、钛合金、低温钢、聚四氟乙烯、聚酰亚胺和全氟聚醚等,才能解决超低温下结构承受载荷的能力和密封等问题。 [1] 
3.耐老化和耐腐蚀
各种介质和大气环境对材料的作用表现为腐蚀和老化。航空航天材料接触的介质是飞机用燃料(如汽油、煤油)、火箭用推进剂(如浓硝酸、肼类)和各种润滑剂、液压油等。其中多数对金属和非金属材料都有强烈的腐蚀作用或溶胀作用。在大气中受太阳的辐照、风雨的侵蚀以及地下潮湿环境中长期贮存时产生的霉菌会加速高分子材料的老化过程。耐腐蚀性能、抗老化性能、抗霉菌性能是航空航天材料应该具备的良好特性。 [1] 
4.适应空间环境
空问环境对材料的作用主要表现为高真空(1.33×10-oPa)和宇宙射线辐照的影响。金属材料在高真空下互相接触时,由于表面被高真空环境所净化而加速了分子扩散过程,出现“冷焊"现象;非金属材料在高真空和宇宙射线辐照下会加速挥发和老化,有时这种现象会使光学镜头因挥发物沉积而被污染,密封结构因老化而失效。航天材料一般是通过地面模拟试验来选择和发展的,以求适应于空间环境。 [1] 
5.寿命和安全
为了减轻飞行器的结构质量,选取尽可能小的安全余量而达到绝对可靠的安全寿命,被认为是飞行器设计的奋斗目标。对于或运载火箭等短时间一次使用的飞行器,人们力求把材料性能发挥到极限程度。为了充分利用材料强度并保证安全,对于金属材料已经使用“损伤容限设计原则"。这就要求材料不但具有高的比强度,而且还要有高的断裂韧性。在模拟使用的条件下测定出材料的裂纹起始寿命和裂纹的扩展速率等数据,并计算出允许的裂纹长度和相应的寿命,以此作为设计、生产和使用的重要依据。对于有机非金属材料则要求进行自然老化和人工加速老化试验,确定其寿命的保险期。复合材料的破损模式、寿命和安全也是一项重要的研究课题。 [1] 
航空材料是研制生产航空产品的物质保障,与航空技术关系极为密切,具有以下特殊性。
1.轻质高强、高温耐蚀
航空产品特殊的工作环境对航空材料提出“轻质高强、高温耐蚀"的特殊要求。航空工业有一句口号叫做“为每一克减重而奋斗",反映了减重对于航空产品的重大经济意义。而且材料减重对飞机减重的贡献也越来越大,所以轻质高强是航空材料必须满足的首要性能要求。“高温耐蚀"的“高温"是指航空材料要能耐受较高的工作温度。对于机身材料,气动力加热效应使机身表面温度升高,需要结构材料具有好的高温强度;对于发动机材料,要求涡轮盘和涡轮叶片材料要有好的高温强度和耐高温腐蚀性能。“耐蚀"是指航空材料要有优良的抗腐蚀,主要是指抗应力腐蚀、腐蚀疲劳的能力。 [1] 
2.高的质量要求
航空器是技术密集、高集成度的复杂产品,只有采用质地优良的航空材料才能制造出安全可靠、性能优良的飞机和发动机。航空产品的多样性和小批量生产,导致了航空材料研制和生产上的多品种、多规格、小批量、技术质量要求高等特点。 [1] 
3.低成本航空材料
新型号的先进飞机价格不断攀升,航空技术的国家和地区都先后对航空产品提出了“买得起"的要求。而材料在航空产品的成本和价格构成中占有相当份额,所以科学地选材和努力发展低成本材料技术是航空材料发展的重要方向。 [1] 

未来发展方向

编辑 播报
1. 高性能
高性能是指轻质、高强度、高模量、高韧性、耐高温、耐低温,抗氧化、耐腐蚀等。材料的高性性能对减轻飞行器结构质量和提高结构效率、提高服役可靠性及延长使用寿命极为重要,是航空航天材料研究不断追求的目标。
2. 高功能及多功能
材料在光、电、声、热、磁方面的特殊功能是支撑某些关键技术以提高飞行器机动性能和突防能力的重要保证。如以红外材料为基础的光电成像夜视技术能增强坦克、装甲车、飞机、军舰及步兵的夜战能力,红外成像制导技术可大大提高的和抗干扰能力,以新型固体激光材料为基础的激光测距和火控系统等可使灵活作战能力大大加强。 [1] 
3. 复合化
复合化已成为新材料的屯要发展趋势之一。业内专家指出,航空复合材料未来20~30年将迎来新的发展时期,甚至引发航空产业链的革命性变革,包括设计理念的创新和设计团队知识的更新,航空产品供应链的战略性改变,新型复合材料技术不断出现(如混杂复合技术、源于自然界中珍珠贝壳结构后发的仿生复合技术),以及对航空维修业提出的挑战。复合材料可以明显减轻结构质量和提高结构效率。国外卫星、战略及固体火箭发动机的关键结构材料几乎已经复合材料化。 [1] 
4. 智能化
智能化是航空航天材料重要发展趋势之一。智能复合材料将复合材料技术与现代传感技术、信息处理技术和功能驱动技术集成于一体,将感知单元(传感器)、信息处理单元(微处理器)与执行单元(功能驱动器)联成一个回路,通过埋置在复合材料内部不同部位的传感器感知内外环境和受力状态的变化,并将感知到的变化信息通过微处理器进行处理并做出判断,向功能驱动器发出指令信号;而功能驱动器可根据指令信号的性质和大小进行相应的调节,使构件适应有关变化。整个过程*自动化,从而实现自检测、自诊断、自调节、自恢复、自保护等多种特殊功能。智能复合材料是传感技术、计算机技术与材料科学交叉融合的产物,存在许多领域展现了广阔的应用前景,例如飞机的智能蒙皮与自适应机翼就是由智能复合材料构成的一种的智能结构。 [1] 
5. 低成本
航空航天村料从过去中纯追求高性能发展到今天综合考虑性能与价格的平衡,低成本化贯穿材料、结构设计、制造、检测评价以及维护维修等全过程。对碳纤维复合材料而言,其制造成本在整个成本中占有相当大的比例;因此,对其低成本制造技术应投入足够关注。各种低成本制造技术发展很快,尤其是以树脂传递成型(RTM)为代表的液体成型技术和以大型复杂构件的共固化/共胶接为代表的整体化成型技术等均得到了很大的发展。航空航天材料的低成本是一个重要发展趋势。材料的低成本目标包括原材料、制备加工、监测评价和维修等全过程。 [1] 
6.高环境相容性
航空航天飞行器所用的材料及其制备、加工和回收,必须具有高度的环境相容性,无污染,易回收。
7.材料的计算设计和模拟仿真
航空航天技术日新月异地发展,飞行器关键零部件的工况和环境条件更加苛刻,为适应材料科学的创新,发展了材料的计算设计和数值模拟技术。


  • 联系电话电话021-80379806
  • 传真传真86-021-33275860
  • 邮箱邮箱835472032@qq.com
  • 地址公司地址上海市青浦区外青松公路7548弄588号1幢1层Z区170室
© 2025 版权所有 上海飞钒特钢集团有限公司   备案号:沪ICP备2023019473号-1   sitemap.xml   管理登陆   技术支持:化工仪器网       
  • 公众号二维码